Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1668006.v1

ABSTRACT

Critically ill COVID-19 patients under invasive mechanical ventilation (IMV) are at greatly increased risk of death compared to the general population. While some drivers of COVID-19 disease progression, such as inflammation and hypercoagulability, have been identified, they do not completely explain the mortality of critically ill COVID-19 patients, making a search for overlooked factors necessary. A recent study examined the virome of tracheal aspirates from 25 COVID-19 patients under IMV. These samples were compared to tracheal aspirates from non-COVID patients and nasopharyngeal swabs from individuals with mild COVID-19. Critically ill COVID-19 patients had elevated expression of human endogenous retrovirus K (HERV-K), and elevated HERV-K expression in tracheal aspirate and plasma was associated with early mortality in those same patients. Among deceased patients, HERV-K expression was associated with IL-17-related inflammation, monocyte activation, and increased consumption of clotting factors. A subsequent in vitro experiment found that exposure to SARS-CoV-2 increased HERV-K expression in human primary monocytes from healthy donors. This preliminary study only included 25 individuals but implicates HERV-K in the physiopathology of COVID-19 and suggests that HERV-K could be used as a biomarker of disease severity in COVID-19 patients. 


Subject(s)
COVID-19
2.
preprints.org; 2022.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202203.0375.v1

ABSTRACT

The coronavirus disease of 2019, COVID-19, is caused by an infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was recognized in late 2019 and has since spread worldwide leading to a pandemic with unprecedented health and financial consequences. There remains an enormous demand for new diagnostic methods that can deliver fast, low-cost, and easy-to-use confirmation of a SARS-CoV-2 infection. We have developed an affordable electrochemical biosensor for the rapid detection of serological immunoglobulin (Ig) G antibody in sera against the Spike protein. Materials and Methods: A previously identified linear B-cell epitope (EP) specific to SARS-CoV-2 spike glycoprotein and recognized by IgG in patient sera was selected for the target molecule. After synthesis, the EP was immobilized onto the surface of the working electrode of a commercially available screen-printed electrode (SPE). The capture of SARS-CoV-2 specific IgGs allowed the formation of an immunocomples that was measured by square wave voltammetry from its generation of hydroquinone (HQ). Results: An evaluation of the performance of the EP-based biosensor presented a selectivity and specificity for COVID-19 of 93% and 100%, respectively. No cross-reaction was observed to antibodies against other diseases that included Chagas disease, Chikungunya, Leishmaniosis, and Dengue. Differentiation of infected and non-infected individuals was possible even at high dilution factor that decreased the required sample volumes to a few microliters. Conclusion: The final device proved suitable for diagnosing COVID-19 assaying actual serum samples and the results displayed good agreement with the molecular biology diagnoses. The flexibility to conjugate other EPs to SPEs suggests that this technology could be rapidly adapted to diagnose new variants of SARS-CoV-2 or other pathogens.


Subject(s)
COVID-19
3.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-514541.v1

ABSTRACT

Critically ill 2019 coronavirus disease patients (COVID-19) under invasive mechanical ventilation (IMV) are 10- to 40-times more likely to die than the general population. Although progression from mild to severe COVID-19 has been associated with hypoxia, uncontrolled inflammation and coagulopathy, the mechanisms involved in progression to severity are poorly understood. By analyzing the virome from tracheal aspirates (TA) of 25 COVID-19 patients under IMV, we found higher levels and differential expression of human endogenous retrovirus K (HERV-K) genes compared to nasopharyngeal swabs from mild cases and TA from non-COVID patients. Proteomic analysis and RT-PCR confirmed the presence of HERV-K in these patients. Moreover, increased HERV-K expression was triggered in human primary monocytes from healthy donors after experimental SARS-CoV-2 infection in vitro. In critically ill patients, higher HERV-K levels were associated with early mortality (within 14 days) in the intensive care unit. Increased HERV-K expression in deceased patients associated with IL-17-related inflammation, monocyte activation and higher consumption of clotting/fibrinolysis factors. Our data implicate the levels of HERV-K transcripts in the outcome of critical COVID-19 patients under invasive mechanical ventilation.


Subject(s)
COVID-19
4.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3750109

ABSTRACT

Background: The dynamics underlying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection remains poorly understood. We added to the registered case reports of reinfection in USA, Belgium/Netherlands, Ecuador and Hong Kong, a small cluster of individuals with two episodes of 2019 coronavirus disease (COVID-19). Virus genomic analysis and the host immune response were used to characterize this group. Methods: Four individuals from Rio de Janeiro, Brazil, with clinical manifestations of COVID-19 on March and again in late May of 2020 were studied. Nasopharyngeal swabs were collected for RT-PCR and viral genome sequencing (BGI-MGI-2000). Plasma samples from the acute and convalescent phases of both infection episodes were accessed to document innate and humoral responses.Findings: After approximately 60 days of the first diagnostic episode of SARS-CoV-2 infection, the four individuals presented new clinical and molecular evidence of COVID-19. Complete SARS-CoV-2 genome sequence provided genetic evidence of reinfection. The individuals presented an enhanced innate response compared to healthy SARS-CoV-2 negative controls. Patients did not develop a neutralizing humoral immunity, possibly remaining susceptible to another episode of COVID-19. The second episode, associated with higher viral loads and clinical symptoms, likely boosted their anti-SARS-CoV-2 humoral response. Interpretation: SARS-CoV-2 reinfection was fully documented by identification of genetically distinct virus sequences in the first and second episodes for two individuals. The quantity of SARS-CoV-2-associated genetic reads and coverage of virus genome ruled out that the initial RT-PCR results were false positive. The identification that some individuals with mild COVID-19 may have controlled SARS-CoV-2 replication without developing detectable humoral immunity, opens the possibility that reinfection may be more frequent than supposed – but weakly documented.


Subject(s)
COVID-19 , Coronavirus Infections
SELECTION OF CITATIONS
SEARCH DETAIL